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A B S T R A C T

Disinformation created by artificial neural networks has been widespread along with the recent rapid progress
in multimodal learning, and the arising of vision-language foundation models. This disinformation caused
a substantial negative impact on society. To solve this pressing issue, numerous efforts have been made to
detect either image deepfake or text manipulation. These methods generally focus on a single modality while
ignoring the complementary knowledge provided by the counterpart in the other modalities. In this paper,
we aim to detect multimodal disinformation and further identify manipulated image areas or text tokens. To
this aim, a novel framework termed Vision-language Knowledge Interaction (ViKI) is designed to explore the
semantic correlation of an object in different modalities. Specifically, we propose a vision-language embedding
regulator to build a joint feature space in which the embeddings of the same semantic are well-aligned.
Besides, we perform cross-modality knowledge interaction so as to aggregate uni-modality embedding by
adaptively injecting cross-modality information. By exploring vision-language knowledge jointly, ViKI produces
accurate predictions for detecting and grounding disinformation. We demonstrate the superiority of ViKI by
ablation studies and comparisons with the state-of-the-art methods on large-scale benchmarks. Notably, ViKI
outperforms the state-of-the-art works by a rise of 3.71% in precision and 2.14% in CF1 respectively.
. Introduction

Convolutional Neural Networks (CNN) [1] have advanced rapidly
ver the last decade. Deepfake technology [2], which relies on CNN
o generate realistic-looking images, has drawn significant attention.
his technology can be found in widespread applications across various
omains [3–8], which significantly enhances convenience for individ-
als. However, the misuse of deepfake is prevalent, and the deepfake
odel strives to create deceptive disinformation that appears genuine

ut does not exist in reality. The dissemination of such disinformation
oses significant risks, including misguidance, confusion, and potential
arm to individuals’ reputations and privacy. Moreover, such disin-
ormation can lead to various negative outcomes, such as increased
raud, manipulation of political processes, and the fragmentation of
ociety [9–11].

To mitigate the negative effects of deepfake, researchers are actively
ngaged in the development of deepfake detection technologies [12–
6], with the objective to identify effectively and address the pervasive
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threat posed by misleading information. Based on the manipulated
content, the domain of deepfake detection can be categorized into
two primary divisions: unimodal and multimodal detection, which
might involve crafted visual representations, textual descriptions, or a
combination of both. There are numerous works [17–20] focusing on
unimodal deepfake detection, specifically targeting fabricated images
or manipulated text. However, it is important to note that disinforma-
tion in real-world typically encompass both manipulated images and
fabricated text. Consequently, while these investigations have demon-
strated impressive performance in detecting unimodal deepfake, they
fall short when it comes to effectively tackle multimodal deepfakes.
Fig. 1 depicts the difference between unimodal and multimodal deep-
fake detection techniques. As shown in the figure, while the unimodal
approach solely identifies the authenticity of a single modality, the
multimodal method not only discerns the truthfulness of modalities
but also engages in multi-classification, bounding box localization for
manipulated images, and token grounding for manipulated text.
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Fig. 1. Comparison of single-modal disinformation detection (left) and multi-modal disinformation detection. By jointly utilizing vision and language information, the multimodal-
based method can simultaneously detect and grounding the forgery detail. This entitles the learned model to be more practical in solving real-world multimodal disinformation
issues.
Compared to purely images or text, the detection of multimodal
disinformation poses greater challenges since it typically involves fab-
rications in both visual and textual domains, where the information is
represented in different formats. In order to address this formidable
challenge, numerous works have embarked into multimodal deepfake
detection [21–26]. Several investigations were dedicated to detecting
small-scale instances of multi-modal fake news [23,24,26]. Alternative
approaches [21,22,25] concentrate on combating out-of-context mis-
information that involves the juxtaposition of authentic images with
manipulated text, without any manipulation of the images or text. Re-
cently, HAMMER [27] was proposed to detect and ground multimodal
deepfake by extensive training on a large-scale deepfake dataset. Apart
from detecting deepfake in a binary classification setting, HAMMER
also entails in-depth interpretation in manipulation grounding to locate
the region of the manipulated image, or the token of text sequence.
Although these models are integrated for multimodal disinformation
detection and grounding, their diagrams in exploring the complemen-
tary knowledge in different modalities can be further improved by
considering the interaction with cross-domain embedding.

In this work, we aim to learn more robust and discriminative vision-
language embeddings to perform accurate multimodal misinformation
detection and grounding. We achieve this objective by the proposed
Vision-language Knowledge Interaction (ViKI) model, which is a unified
framework to perform vision-language knowledge interaction and reg-
ularize feature learning. Specifically, ViKI binds the paired image and
text embeddings into a joint feature space with a novel hypothesis space
regulation. The assumption is that abstract embeddings of the same ob-
ject are tightly clustered in the feature space across modalities, whereas
embeddings of different objects are more distant. Consequently, ViKI
simultaneously optimizes a metric learning objective and a geometry
distance minimization objective to ensure effective alignment of cross-
modality features. Besides, considering that reasoning of multimodal
disinformation requires discriminative representations from both vision
and language modalities, while the balancing of these two components
is varied depends on the specific task. To leverage the complementary
knowledge in cross-modality embedding, we propose ViKI that adap-
tively aggregates unimodal embeddings by exploring the cross-modality
prompt. With the aggregated embeddings, the multitask learning-heads
can produce accurate predictions which can simultaneously detect
the fine-grained type of multimodal deepfake, the area of deepfake
region in an image, and the location of manipulated text tokens. We
summarize the contribution of this paper from the following three
aspects:

• We design a unified framework that can produce discriminative
and informative representations for multimodal disinformation
2

detection. It can achieve superior performance compared with
the latest state-of-the-art (SOTA) methods and is promising in
real-world applications.

• We propose to align the multimodal embedding by jointly opti-
mizing a metric learning objective, as well as a geometry distance
minimization objection, which can enable the embeddings for the
same instance to be closer in the hypothesis space.

• We propose the cross-modality knowledge interaction mechanism
to adaptively aggregate unimodal embedding with cross-modality
knowledge. This enables the formulation of a discriminative fused
representation which facilitates the learning of multitasking ob-
jectives.

The remainder of the paper is organized as follows. In Section 2, the
related literature is reviewed. In Section 3, we detail the proposed ViKI
model. In Section 4, comprehensive comparison and ablation studies
are conducted to evaluate the proposed method. The conclusion is
drawn in Section 5.

2. Related work

2.1. Deepfake detection

With the rise of a generative model and the potential misuses, the
emergence of deepfake detection techniques has been imperative. Deep-
fake detection refers to the process of identifying and distinguishing
between genuine and manipulated media content created by deepfake
techniques. It is categorized into two primary divisions: unimodal
deepfake detection and multimodal deepfake detection.

Unimodal Deepfake Detection Numerous research efforts [28–30]
have been dedicated to developing robust and efficient techniques for
detecting and mitigating the spread of manipulated media content.
Nguyen et al. [28] proposed to utilize capsule networks for detecting
different types of spoofing attacks. The study expanded the application
of capsule networks beyond their initial purpose and applied them to
solve inverse graphics problems. Xue et al. [30] introduced GLFNet,
a network that fuses global and local facial features to detect forged
images with perturbations. The method leverages physiological char-
acteristics and deep learning to capture forgery traces and improve
robustness.

Multimodal Deepfake DetectionMultimodal deepfake detection [21–
23,26] has become popular and important research topic due to the
increasing concern over the deceptive use of multimodal deep learning
techniques. Abdelnabi et al. [21] proposed a Consistency-Checking
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Network (CCN) to enhance the accuracy and reliability of the anal-
ysis by using comprehensive consistency checking. Another multi-
modal deepfake detection model HAMMER [27] was employed by Shao
et al. which can capture fine-grained interactions between different
modalities. The HAMMER incorporates shallow manipulation reasoning
through contrastive learning between uni-modal encoders and deep
manipulation reasoning through modality-aware cross-attention using
a multi-modal aggregator.

In this study, our attention is directed toward the realm of mul-
timodal deepfake due to its substantial relevance in societal privacy
concerns. Our approach involves the concurrent mitigation of face ma-
nipulation within the image modality and the dissemination of textual
disinformation, all within a cohesive framework.

2.2. Large-scale foundation models

In the realm of deep learning and artificial intelligence, researchers
have observed the ascendance of Large-Scale Foundation Models. No-
tably, the focus has shifted towards the exploration of vision-language
pre-training models and the transformer paradigm.

Vision-Language Pre-training Models To alleviate the need for train-
ing models from scratch, vision-language pre-training methods have
gained considerable attention and research focus in multimodal tasks
[31–35]. An align the image and text representations Before Fusing
(ALBEF) [31] method was proposed by Li et al.. The ALBEF model im-
proves vision and language learning without requiring extra bounding
box annotations. Tiong et al. [32] proposed a Plug-and-Play VQA (PNP-
VQA) model for zero-shot VQA without training. To ensure accurate
question answering and generate comprehensive image captions, it
leverages network interpretation as an interface between pre-trained
language models and vision-language models.

Transformer In the past years, with the emergence of the Transformer
model capturing widespread attention, deep learning has witnessed
remarkable achievements across various domains. Initially proposed
by Vaswani et al. [36], the Transformer model has showcased an
exceptional performance in the domain of machine translation tasks.
Radford et al. [37] proposed Generative Pre-trained Transformer (GPT),
a text generation model based on the Transformer architecture, aimed
at generating natural language text. For instance, Vision Transformer
(ViT) [38], a visual attention model based on the Transformer frame-
work, has gained wide recognition. The ViT framework challenges the
conventional image recognition tasks and replaces traditional CNNs.

In this work, we use pre-trained vision and language models as the
feature extractor to obtain the representative embedding from different
modalities. Inspired by the self-attention and cross-attention mecha-
nism in Fig. 2, we perform cross-modality information aggregation
to fully explore the complementary knowledge, which helps further
detection and grounding on the disinformation.

2.3. Feature space alignment

Feature space alignment refers to the process of aligning or mapping
the feature spaces of different modalities or domains. This alignment
aims to facilitate cross-modal or cross-domain tasks by ensuring that
the learned representations capture similar or compatible information
across different modalities or domains. The advancement of feature
space alignment has manifested itself in numerous avenues of research,
spanning object recognition [39,40], face antispoofing [41,42], and
medical imaging analysis [43,44]. Sun et al. [45] used a domain
alignment network to align feature representations from the source and
target domains. The method reduces the distribution discrepancy and
improves the target classification accuracy.

Recently, a significant amount of scholarly attention has been di-
rected towards ameliorating distribution disparities among distinct do-
mains, and this is another research direction closely related to feature
3

space alignment. Long et al. [46] employed Maximum Mean Dis-
crepancy (MMD) to measure distribution disparity between different
domains. Their approach aims to align feature spaces by minimizing
the distance between feature distributions from distinct domains. Li
et al. [39] sought to minimize the MMD distance between the dis-
tributions of the source domain based on the hidden-layer features.
Additionally, they employed adversarial learning to ensure similarity
between the feature distributions and a predetermined prior distri-
bution. Inspired by the aforementioned methods, we further build a
geometry distance minimization objective to supervise the learning of
joint feature space, in which the embedding with the same semantics
is aligned with a short distance.

2.4. Contrastive learning

Contrastive learning is a self-supervised representation learning
framework. It refines feature representation by augmenting positive
pair similarity and diminishing that of negative pairs in a concealed
space. It is based on information theory and has been extensively
studied in various domains. One of its initial formulations is the In-
foMax principle [47] was put forward by Linsker et al.. The InfoMax
principle seeks to maximize the mutual information between input and
output representations. Building upon this notion, Hadsell et al. [48]
extended the framework by introducing the Siamese network architec-
ture. Siamese networks facilitate representation learning by minimizing
the contrastive loss between pairs of samples. In the early stages
of contrastive learning [48,49], although these techniques have the
potential to improve the training performance of the system, they can
also introduce the challenge of training instability. In order to tackle
the challenge of slow training in contrastive learning, Sohn et al. [50]
introduced the concept of multi-class N-pair loss. This approach funda-
mentally involves aggregating multiple data instances for simultaneous
comparison, thereby achieving error averaging and enhancing train-
ing stability. A notable advancement in contrastive learning is the
introduction of the Info Normalized Cross Entropy (InfoNCE) loss by
Oord et al. [51]. The InfoNCE loss is designed to maximize agreement
between positive pairs while minimizing agreement between negative
pairs. This loss function has gained widespread adoption in various
contrastive learning approaches, such as SimCLR [52] and MoCo [53].
The recent success of contrastive learning can be attributed to the
effectiveness of large-scale self-supervised training. By leveraging the
structural characteristics of unlabeled data, contrastive learning has
demonstrated superior performance across diverse domains, including
image recognition [53], natural language processing [54], and speech
recognition [55]. In this work, besides employing contrastive learning
for feature alignment, we propose a geometry regularizer using MMD
distance to align the vision and language embedding into a joint feature
space, so as to utilize the synergy for accurate disinformation detection.

3. Proposed method

3.1. Problem formulation

In this work, the primary objective is to confront multimodal mis-
information through the lens of a unified framework. The proposed
framework endeavors to extract and aggregate knowledge from the
realms of vision and language. To be more specific, the proposed model
grapples with the challenge of discerning truth from falsity within a
complex landscape. Specifically, given an image depicting a person
in a specific scenario and a corresponding textual description of that
scenario, our model aims to achieve various objectives, including: (1)
Uncovering the presence of deepfake alterations, should they be present
within the input image. (2) Pinpointing the precise regions within the
image that have undergone modification. (3) Detecting any form of
textual manipulation or tampering within the description. (4) Identi-
fying the manipulation of particular words, thereby illuminating the
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Fig. 2. Comparison on self-attention (left) and cross-attention (right). In self-attention, the query (Q), key (K), and value (V) all come from the same feature activation. However,
in cross-attention, the query (Q) comes from a different source than the key (K) and value (V).
Fig. 3. The overall framework of ViKI. It is composed of three key components. (a) A vision-language feature extractor utilizing representation regularization for a concise feature
domain. (b) An integrator merging features from diverse modalities. (c) Multifaceted learning modules for detailed detection and grounding.
semantic alterations. It is non-trivial to derive a unified framework that
is capable of learning discriminative representations from the realms of
vision and language modalities to perform joint deepfake detection and
grounding. Multimodal misinformation detection inherently presents
a greater challenge, as it involves the representation of information
across diverse modalities. Moreover, the integration of such multimodal
information is further compounded by the noisy artifacts introduced
by deepfake practices. It is non-trivial to design a unified framework
that possesses the remarkable ability to discern discriminative repre-
sentations from the realms of vision and language is no trivial feat.
Additionally, the subsequent fusion of these representations becomes
paramount, as it enables the holistic consideration of complemen-
tary information for the purposes of misinformation detection and
grounding.

3.2. Methodology overview

To learn multimodal representation and leverage their synergy for
fine-grained misinformation detection, we propose a unified model,
Vision-language Knowledge Interaction (ViKI), which learns a compact
feature space to facilitate multimodal representation fusion. The overall
framework of ViKI is depicted in Fig. 3. It consists of three hierarchi-
cal modules. (1) A vision-language feature extractor which employs
representation regularization to construct a compact feature space for
vision and language knowledge. (2) The vision-language knowledge
aggregator, designed to fuse features extracted from distinct modalities.
It goes beyond mere combination and interactively concentrates on
capturing discriminative knowledge from the joint representation of
the two modalities. (3) Multitask learning heads that are correspond-
ing to each learning objective to achieve fine-grained detection and
grounding. The transformer module is constructed from 12 layers of
4

attention blocks. The first six layers are dedicated to fine-grained text
feature extraction by utilizing self-attention mechanisms, whereas the
subsequent six layers focus on the amalgamation of text and image
attributes by cross-attention mechanisms. We employ the lightweight
Multi-Layer Perceptrons (MLPs) to design the bounding box detector,
multi-label classifier, and binary classifier. All of them are designed
as 3-layer, and the dimension of the final layers is determined by the
specific task accordingly.

Let us consider a paired input denoted as 𝑋 = [𝐼, 𝑇 ], where 𝐼
represents an image and 𝑇 represents its textual description. In order to
extract the semantic information embedded within this input, we lever-
age the capabilities of the corresponding image encode 𝐸𝐼 and text en-
coders 𝐸𝑇 . These encoders play a crucial role in transforming the input
into uni-modal representations. These representations serve as compact
yet expressive depictions of the underlying semantic content. Despite
the fact that multimodal information exists in distinct modalities, we
impose regularization to encourage their proximity in the feature space.
This regularization is based on the premise that the multimodal repre-
sentations share the same high-level semantic representation. To fully
explore the synergy between these representations, we further design
an objective-oriented multimodal fusion strategy. This strategy involves
adaptively injecting knowledge from one modality into another, guided
by the specific task at hand and the corresponding features. The archi-
tecture of this framework model is crafted to enable end-to-end training
and optimization using conventional learning optimizers.

3.3. Vision-language representation regularization

Given a multimodal pair [𝐼, 𝑇 ], we extract the unimodality repre-
sentation by the corresponding feature extractor pair [𝐸𝐼 , 𝑇𝑇 ]. To this
end, benefiting from the latest development in self-attention and cross-
attention mechanisms, we use a vision transformer (ViT) [38] as the
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feature extractor for the visual modality, and BERT [54] as the feature
extractor for the text modality.

Specifically, the image is firstly cropped into non-overlapping
patches in the size of 16 × 16, which are further flatted and projected
into high-dimension feature embeddings, with a class token attached at
the first dimension. The embeddings are denoted as 𝐸𝐼 (𝐼) = [𝑖cls, 𝑖pat],

here 𝑥cls is the class token which has the same dimension as the patch
rojection. For the text modality, the input description is tokenized
nd encoded by BERT to get the embedding [𝑡cls, 𝑡tok]. Representations
rom these two modalities are originally in distinct feature space
lthough they carry the same semantic information when representing
he same content. In order to mine the correlation between the cross-
odality representation and align the feature distance in the hypnosis

pace, recent work [27] has proposed to use contrastive learning to
ull the positive multimodal representation while pushing away the
egative one. However, we argue that the intrinsic noisy caused by the
isinformation has already perturbed the semantic information, causing
ontrastive learning to be sub-optimized. To solve this problem, in this
ork, we further propose to regulate the multimodal feature distance
ith a geometry alignment regularization for the positive pairs when

here is no misinformation existing. Specifically, we first calculate the
ontrastive learning objective by considering the correlation among
mage feature 𝐸𝐼 (𝐼) and text feature 𝐸𝑇 (𝑇 ) as

𝑣2𝑡(𝐼, 𝑇 +, 𝑇 −) = E𝑝(𝐼,𝑇 )

[

− log
exp

(

Sim
(

𝐸𝐼 (𝐼), 𝐸𝑇 (𝑇 +)
)

∕𝜏
)

∑𝐾
𝑘=1 exp

(

Sim
(

𝐸𝐼 (𝐼), 𝐸𝐼 (𝑇 −
𝑘 )

)

∕𝜏
)

]

,

(1)

where Sim(⋅) calculates the similarity by inner product, and 𝜏 is the
emperature factor. 𝑇 + is the text sample with the same semantic
eaning as 𝐼 , while 𝑇 − is the negative sample that carries different

nformation. Similarly, the text-to-vision contrastive loss 𝑡2𝑖(𝑇 , 𝐼+, 𝐼−),
he uni-modality contrastive losses 𝑡2𝑡(𝑇 , 𝑇 +, 𝑇 −) and 𝑖2𝑖(𝐼, 𝐼+, 𝐼−),
re jointly considered to further regulate the formulation of the joint
eature space. Therefore, the overall contrastive learning objective is
ormulated as

con(𝐼, 𝑇 ) = 𝑣2𝑡(𝐼, 𝑇 +, 𝑇 −) + 𝑡2𝑖(𝑇 , 𝐼+, 𝐼−)

+ 𝑡2𝑡(𝑇 , 𝑇 +, 𝑇 −) + 𝑖2𝑖(𝐼, 𝐼+, 𝐼−)
(2)

In practices, we follow the existing works [27,31,53] to use the to-
en representations 𝑖cls and 𝑡cls for calculating the similarity in Eq. (2).
o alleviate the interface due to the noise in 𝑡cls, we use its counterpart
𝑚
cls produced by the momentum text encoder [53] to calculate the
imilarity by the inner product as [𝑖Tcls ⋅ 𝑡

𝑚
cls].

To further ensure the coherent and consistency of multimodal fea-
ures, a maximum mean discrepancy (MMD) regularization is further
pplied to minimize the distance between the image feature and the
ext feature. Specifically, given the feature pairs from an original
mage–text pair, which is not manipulated in either modality, we
alculate the MMD distance of them and use as a learning objective
s

dist(𝐼, 𝑇 ) = dist(𝑖cls, 𝑡cls). (3)

By considering jointly the contrastive objective and the distance
egularization, the final loss function can be formulated as

feat = 𝜂1con + 𝜂2dist. (4)

.4. Vision-language feature aggregation

Once the vision embedding 𝐸𝐼 (𝐼) and language feature 𝐸𝑇 (𝑇 ) are
btained, the complementary cross-modality information will be ex-
lored for feature discrimination augmentation by aggregating the
nowledge from one modality to another. We achieve this objective by
mploying cross-attention layers to interactive embeddings in different
5

odalities by modeling each of them as query (Q), key (K), and e
alue (V). Specifically, by considering Q as the source information, the
nformation from K-V can be aggregated into Q by

ross-Attn(𝑄,𝐾, 𝑉 ) = Softmax(𝐾𝑇𝑄∕
√

𝐷)𝑉 , (5)

here Softmax(𝐾𝑇𝑄) will form an attention map to guide the knowl-
dge flow from 𝑉 to 𝑄. In our specific context, for image deep-
ake grounding, we consider image embedding as the primary source
f knowledge, while the text embedding will be used as the auxil-
ary component to provide additional and complementary information.
herefore, we formulate the language-to-vision (L2V) aggregation as

𝑔𝑔(L2V) = Cross-Attn(𝐸𝐼 (𝐼), 𝐸𝑇 (𝑇 ), 𝐸𝑇 (𝑇 )). (6)

Similarly, for text manipulation grounding, we enhance the lan-
uage embedding with the help of vision embedding by performing
ision-to-language (V2L) aggregation as

𝑔𝑔(V2L) = Cross-Attn(𝐸𝑇 (𝑇 ), 𝐸𝐼 (𝐼), 𝐸𝐼 (𝐼)). (7)

To further refine the vision class token 𝐼cls, we follow HAMMER [27]
o employ an LPAA module to attentively learn more important knowl-
dge for image grounding. For the multimodal detection tasks, we
rgue that solely using the information in 𝐴𝑔𝑔(V2L) is inadequate as
he information within it is biased to language modality, while we
xperimentally demonstrated that vision modality contributes more to
hese tasks. To solve this problem, we designed an adaptive fusion
echanism to inject the vision information to 𝐴𝑔𝑔(V2L) by

𝑔𝑔+(L2V) = 𝐴𝑔𝑔(L2V) + 𝛼𝐸𝐼 (𝐼),

𝑔𝑔+(V2L) = 𝐴𝑔𝑔(V2L) + 𝛽LPAA(𝑖cls),
(8)

here 𝐴𝑔𝑔+(⋅) is the refined embedding. It should be noted that for
𝑔𝑔+(V2L), we update the class token in 𝐸𝐼 (𝐼) with LPAA(𝑖cls). After the
mbedding enhancement, we have 𝐴𝑔𝑔+(L2V) = [𝑖+cls, 𝑖

+
pat], and 𝐴𝑔𝑔+(V2L) =

𝑡+cls, 𝑡
+
tok], which are used for subsequent multitask learning.

.5. Multimodal multi-task learning

Our framework is versatile at detecting and grounding multimodal
isinformation from the following four perspectives, namely image
eepfake grounding, text manipulated grounding, multimodal deepfake
etection, and deepfake fine-grained classification. These objectives are
chieved by different training supervisions as following.

mage Deepfake Grounding To grounding the area of the image which
as been manipulated, a bounding box detection head is designed
hich is composed of a three-layer MLP. We denote the bounding
etection head as ℎ𝑖(⋅) which takes the augmented image embedding
𝑔𝑔+(V2L) as the input and reproduce the corresponding bounding box
rediction, which is supervised by the grounding objective as

̂𝑦box = Sigmoid(ℎ𝑖(𝑖+𝑐𝑙𝑠)),

img = E(𝐼,𝑇 )∼𝑃
[

‖

‖

̂𝑦box − 𝑦box‖‖ + IoU( ̂𝑦box − 𝑦box)
]

,
(9)

here 𝑦box is the ground truth for bounding box detection.

ext Manipulation Grounding To grounding the manipulated text
oken, the token representation 𝑡+tok is fed into a token manipulation
etector to detect the manipulation location. Similar to existing works,
e also employ a momentum version of the aggregator and detector,
hich is denoted as ℎ𝑚𝑡 . The overall objective function is formulated as

tok = E(𝐼,𝑇 )∼𝑃 [−𝑦toklog(ℎ𝑡(𝑡+tok))],

m
tok = E(𝐼,𝑇 )∼𝑃KL

[

ℎ𝑡
(

𝑡+tok
)

∥ ℎ𝑚𝑡
(

𝑡𝑚tok
)]

,

tmg = (1 − 𝛾)𝑡𝑜𝑘 + 𝛾𝑚
tok,

(10)

here ℎ𝑡 is a token detector composed of a three-layer MLP, ℎ𝑚𝑡 is
he image embedding extracted by the momentum-updated feature

xtractor, and 𝛾 is a balancing factor.
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Fig. 4. Visualization on a few samples from the DGM4 [27] dataset, which includes various types of manipulations on vision or language modality. The first row is the untouched
raw images, the second row is the manipulated image, the third row is the corresponding description, and the fourth row is the label for the manipulation.
Multimodal Deepfake Detection Once the high-level representation
is fused by the image and text embedded is obtained, it can be used to
reason if any deepfake, regardless of the modality, has occurred on the
given vision-language pair. To achieve this end, we take the 𝑡+cls token
in the 𝐴𝑔𝑔+V2L as the input to the tailored detection network to perform
binary deepfake reasoning. We design the detection network ℎbd as
a light-weight MLP with three FC layers, which outputs the softmax
prediction to indicate the probability for the deepfake. The detection
network is supervised by the conventional binary classification loss as

mdb = E(𝐼,𝑇 )∼𝑃 − [𝑦blog(ℎbd

(

𝑡+tok

)

) + (1 − 𝑦b)log(1 − ℎbd

(

𝑡+tok

)

)]. (11)

Fine-grained Deepfake Justification Apart from the above binary
deepfake detection, ViKI is capable of fine-grained deepfake justifica-
tion which aims to determine the specific type of manipulations, such
as face/text swap (FS/TS), or face/text attribute (FA/TA) manipula-
tion. This is essentially a four-way classification task achieved by an
MLP-based classifier with the following learning objective:

mdm = E(𝐼,𝑇 )∼𝑃 − [
4
∑

𝑖=1
𝑦(𝑖)m log(ℎ(𝑖)md

(

𝑡+tok

)

)], (12)

where 𝑦(𝑖)𝑚 is the one-hot encoded label for the 𝑖th type of manipulation,
while ℎ(𝑖)md

(

𝑡+tok

)

is the corresponding prediction by the multi-class
deepfake detector ℎmd. By combining the proposed embedding reg-
ularization  and the multitask learning objectives, the final loss
6

feat
function is formulated as:

train = feat + 𝛼1img + 𝛼2tmg + 𝛼3mdb + 𝛼4mdm. (13)

4. Experimental results and analysis

4.1. Implementation details

We employed the vision transformer (ViT-B/16) [38] as the image
encoder and BERT [54] as the text encoder. All the images were resized
to 256 × 256. The batch size and training epoch were set to 32 and
50, respectively. We used a cosine annealing strategy to warm up the
learning rate to 1 × 10−4 in the first 1000 iterations, and then decayed
to 1 × 10−6 in the remaining steps. The AdamW optimizer [56] was
adopted for updating the parameters and the weight decay ratio was
set to 0.02. The balancing factors in Eq. (4) were experimentally set
as: 𝜂1 = 0.1, 𝜂2 = 10. The hyperparameter in Eq. (13) were set as:
𝛼1 = 0.1, 𝛼2 = 𝛼3 = 𝛼4 = 1. For the aggregation objective in Eq. (8),
the learnable factors 𝛼 are initialized to 1.0 and 𝛽 was initialized to
10. All experiments were conducted on 4 NVIDIA A100 GPUs with the
PyTorch [57] framework.

4.2. Benchmark details

The DGM4 dataset [27] comprises 230,000 news samples, including
77,426 pristine image–text pairs and 152,574 manipulated pairs. The
manipulated pairs consist of 66,722 face swap manipulations, 56,411
face attribute manipulations, 43,546 text swap manipulations, and
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Fig. 5. Visualization for a partial of samples in DGM4 datasets detected by the proposed method.
Table 1
Comparison with the SOTA methods. The best results are shown in Red.

Categories Binary Cls Multi-Label Cls Image grounding Text grounding

Methods AUC ACC EER↓ mAP CF1 OF1 IoUmean IoU50 IoU75 Precision Recall F1

CLIP [58] 83.22 76.40 24.61 66.00 59.52 62.31 49.51 50.03 38.79 58.12 22.11 32.03
ViLT [59] 85.16 78.38 22.88 72.37 66.14 66.00 59.32 65.18 48.10 66.48 49.88 57.00
HAMMER [27] 93.19 86.39 14.10 86.22 79.37 80.37 76.45 83.75 76.06 75.01 68.02 71.35
ViKI (Ours) 93.51 86.67 13.87 86.58 81.07 80.10 76.51 83.95 75.77 77.79 66.06 72.44
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Table 2
Comparison of image Deepfake detection methods.

Categories Binary Cls Image grounding

Methods AUC EER↓ ACC IoUmean IoU50 IoU75

TS [60] 91.80 17.11 82.89 72.85 79.12 74.06
MAT [18] 91.31 17.65 82.36 72.88 78.98 74.70
ViKI (Ours) 91.85 15.92 84.90 75.93 82.16 74.57

able 3
omparison of sequence manipulation tagging methods.
Categories Binary Cls Text grounding

Methods AUC EER↓ ACC Precision Recall F1

BERT [54] 80.82 28.02 68.98 41.39 63.85 50.23
LUKE [61] 81.39 27.88 76.18 50.52 37.93 43.33
ViKI (Ours) 92.31 15.27 85.35 78.46 65.09 71.15

8,588 text attribute manipulations. About one-third of the manipu-
ated images and half of the manipulated text are combined to form
2,693 mixed manipulation pairs. To maintain emotional balance, the
ataset ensures an equal representation of positive and negative senti-
ent directions through modifications of the image and text attributes.
ost manipulated images have small regions of manipulation, and

he manipulated text tokens are relatively few. This makes the DGM4

ataset more challenging for forgery detection compared to existing
eepfake and multi-modal disinformation datasets. Illustrations from
he DGM4 dataset’s particular instances are shown in Fig. 4.

.3. Evaluation metrics

In order to ascertain the effectiveness of the proposed framework,
e carry out a comprehensive evaluation, considering both objective
nd subjective criteria. For objective evaluation, evaluation of the four
asks, namely binary classification, multi-classification, manipulated
mage bounding box grounding, and manipulated text token grounding,
nvolves the application of diverse assessment metrics. Three evaluation
7

i

etrics, namely Area Under the Curve (AUC), Equal Error Rate (EER),
nd Accuracy (ACC), are employed to assess the binary classification
ask. The AUC metric captures the overall performance of a binary
lassifier through the ROC curve. The EER determines the balanced
erformance point where FAR and FRR are equal on the ROC curve.
he ACC measures the accuracy of the classifier by calculating the ratio
f correct predictions to total samples. To evaluate the performance
f the multi-classification task, we adopt multiple evaluation metrics:
ean Average Precision (mAP), class-wise F1 score (CF1), and overall

1 score (OF1). The mAP is a measure that calculates the average
recision across diverse classes, incorporating both precision and recall.
his metric offers a comprehensive assessment of the model’s capability
o accurately rank the classes. The CF1 evaluates the model’s perfor-
ance for individual classes by considering both precision and recall.

t offers insights into the model’s accuracy in classifying instances
ithin each specific class. The OF1 computes the harmonic mean
f precision and recall across all classes, providing a comprehensive
easure of the model’s overall performance in the multi-classification

ask. When assessing the performance of a task related to manipulated
mage bounding box grounding, several evaluation metrics are em-
loyed. These include the calculation of mean Intersection over Union
IoUmean), Intersection over Union at a threshold of 50% (IoU50), and
ntersection over Union at a threshold of 75% (IoU75). Intersection
ver Union (IoU) is a commonly used evaluation metric in computer
ision tasks, especially in object detection and image segmentation.
t measures the overlap between predicted bounding boxes or seg-
entation masks and ground truth annotations. For the purpose of

valuating the performance of a manipulated text token grounding task,
he metrics employed include Precision, Recall, and F1-score. Precision
easures the accuracy of the positive predictions, Recall quantifies

he ability to correctly identify positive instances, and F1-score com-
ines both metrics to provide a balanced assessment of the model’s
erformance. Among these twelve evaluation metrics, excluding the
ER metric, all other metrics demonstrate that larger values correspond
o superior system performance. And smaller values of the EER metric
ndicate improved system performance.
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Table 4
Ablation studies on the critical modules in the proposed ViKI model. The best results are shown in Red.

Categories Binary Cls Multi-Label Cls Image grounding Text grounding

Methods AUC ACC EER↓ mAP CF1 OF1 IoUmean IoU50 IoU75 Precision Recall F1

Baseline 92.08 85.25 15.50 85.22 78.94 78.39 75.56 82.84 74.70 73.39 67.43 70.28
Baseline+dist 93.18 86.57 14.07 86.21 80.57 79.50 76.16 83.64 75.26 76.38 67.07 71.42
Baseline+𝐴𝑔𝑔+(V2L) 93.28 86.40 14.10 86.68 80.63 79.66 76.38 83.81 75.48 75.33 68.48 71.74
Baseline+dist+𝐴𝑔𝑔+(V2L) 93.51 86.67 13.87 86.58 81.07 80.10 76.51 83.95 75.77 77.79 66.06 72.44
Table 5
Ablation study of image modality.

Categories Binary Cls Image grounding

Methods AUC EER↓ ACC IoUmean IoU50 IoU75

Image 84.11 23.21 76.79 73.88 81.00 73.83
Joint 91.85 15.92 84.90 75.93 82.16 74.57

Table 6
Ablation study of text modality.

Categories Binary Cls Text grounding

Methods AUC EER↓ ACC Precision Recall F1

Text 60.93 42.75 54.83 74.47 62.90 68.20
Joint 92.31 15.27 85.35 78.46 65.09 71.15

4.4. Comparison with state-of-the-art methods

Comparison with multimodal detection models To establish the
effectiveness of the proposed technique, comprehensive comparisons
were made against diverse multi-modal learning methods and deep-
fake detection and sequence tagging methods. In order to assess the
efficacy of the proposed methodology in the realm of multi-modal
deepfake detection, a comparative study is conducted by comparing
it with three SOTA multi-modal learning methods. To ensure a con-
sistent dataset selection, the evaluation is performed on the DGM4

ataset. Specifically, Vision-and-Language Transformer (ViLT) [59],
minimalist VLP model, is introduced in this research. It takes a
onolithic approach, simplifying the visual processing to mirror the

onvolution-free methodology utilized for textual inputs. CLIP mod-
ls [58] undergo comprehensive task acquisition during pre-training
o optimize their training objective. This acquired task proficiency
ermits zero-shot transitions to many established datasets using natural
anguage prompts effectively. Referring to Table 1, compared with the
econd-best HAMMER [27], ViKI exhibits superior performance in areas
uch as binary classification, multi-classification, and the grounding of
anipulated entities in both images and texts. Moreover, the proposed
ethod reduces EER by 1.63%. In Figs. 6 to 8, we present visual

esults of manipulation detection and grounding. The proposed method
an effectively ground manipulated bounding boxes and identify the
orrect types of manipulation for both FA and FS. Moreover, most of
he manipulated text tokens were successfully grounded as evidenced
n Figs. 6 to 8. These visualizations confirm the efficacy of ViKI in
chieving accurate manipulation detection and grounding (see Fig. 5).

omparison with unimodal detection models We conducted a com-
arative evaluation against competitive unimodal methods in two sepa-
ate forgery data splits. Concerning the imaging modality, we compared
iKI with two established techniques, namely TS [60] and MAT [18],

or comparative evaluation. TS model composes a module detecting
igh-frequency features for a new modality, a residual-driven module
irecting RGB discernment toward forgery signs, and a module harness-
ng dual modalities to boost mutual feature understanding. The MAT
ramework is designed to discern localized distinctive characteristics
rom diverse facial focal areas. In enhancing the network’s efficacy,

unique regional loss formulation is embedded, complemented by
n augmentation approach that influenced by attention, which can
8

promote antagonistic training. For textual modality, a comparative
evaluation is performed on two widely adopted sequence tagging ap-
proaches utilized in NLP for the purpose of grounding manipulated
tokens, alongside binary classification. The examined techniques com-
prise BERT [54] and LUKE [61]. The BERT model is derived to
pre-train profound bidirectional insights from non-labeled text. The
model coalesces both left and right contextual cues in all strata. LUKE,
grounded in a Wikipedia dataset, offers context-specific portrayals
tailored for entity-related tasks. An entity-sensitive self-attention mech-
anism is incorporated, which discerns token types in its attention score
computation. For this testing, ViKI extracted multimodal embedding
from the paired samples while only unimodal-related objectives are
used for supervising the model training. For image-modal deepfake
detection, we excluded tmg and mdm in Eq. (13), while for text-modal
manipulation detection, we excluded img and mdm. The comparison
results are shown in Tables 2 and 3, from which we observe that
ViKI is robust performing detection and grounding for both unimodal
deepfakes compared with other SOTA methods. This is attributed to
the effective interactive Knowledge aggregation strategy in our model
design (see Table 7).

4.5. Ablation study

Component Analysis We first ablated the effectiveness of each compo-
nent in our model design and report the results in Table 4. The baseline
model is the reproduced HAMMER [27] by the official released code.
We ablated the regularization dist and the adaptive fused representa-
tion 𝐴𝑔𝑔+V2L. We observed from Table 4 that both components improve
the overall performance, and the improvement is more significant
when they are jointly employed. The alignment of multimodal repre-
sentations promotes the formulation of a compact feature space, and
facilitates the subsequent feature aggregation in which complementary
knowledge is utilized to enhance the learned feature. Therefore, we
illustrated the efficiency of the two critical modules and the necessity
to incorporate them simultaneously to learn more representative and
information multimodal embeddings.

Effectiveness of Cross-modality Knowledge In this study, we high-
light the necessity of exploring cross-modality knowledge by comparing
the results from using solely unimodal (denoted as ‘Image’ or ‘Text’)
or multimodal (denoted as ‘Joint’) knowledge. For unimodal design,
unimodal information is employed as the input, without the feature
regularization feat and knowledge aggregation. For the joint design,
multimodal information is used as the input and only the model-specific
training objectives are employed to supervise the training. As shown in
Tables 5 and 6, using the knowledge from the different is benefiting
for the formulation of a discriminative representation for either image
deepfake detection or text manipulation tagging. It is highly necessary
to exploit complementary information from different modalities to
promote the learned embeddings.

Influence of Aggregation Strategy The proposed multimodal em-
bedding aggregation module aims to enhance the representation of
unimodal feature with the complementary information in the cross-
modality embedding. We compared the proposed aggregation strategy,
which uses the LPAA(𝐸𝐼 (𝐼)) as the residual component, with the other

three counterparts. The design of these aggregators is shown in Fig. 9.
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Fig. 6. Visualization for a partial of samples in DGM4 datasets. The text shown in red is the ground truth (GT), while the text inside the blue box is the prediction (Pred).
Fig. 7. Visualization for a partial of samples in DGM4 datasets. The text shown in red is the ground truth (GT), while the text inside the blue box is the prediction (Pred).
Fig. 8. Visualization for a partial of samples in DGM4 datasets. The text shown in red is the ground truth (GT), while the text inside the blue box is the prediction (Pred).
For adaptive attention aggregation, a parallel attention group, include
a cross-attention and adaptive attention, was employed to fuse the
multimodal information. For cross-attention aggregation, the output of
the cross-attention layer was used to enhance the aggregated feature
𝐴𝑔𝑔 . For the image embedding aggregation, a skip connection
9

(V2L)
was directly used to incorporate the image embedding into 𝐴𝑔𝑔(V2L).
For the LPAA residual aggregation, the image information refined by
the LPAA unit was used for the feature enhancement. The detection
results for these four designs are shown in Fig. 2, which experimentally
demonstrates the LPAA residual aggregation can result in a more
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Fig. 9. Ablation study on four types of cross-modal embedding aggregation strategies.
Table 7
Comparison results for the four types of cross-modal embedding aggregation strategies. The best results are shown in Red.

Categories Binary Cls Multi-Label Cls Image grounding Text grounding

Methods AUC ACC EER↓ mAP CF1 OF1 IoUmean IoU50 IoU75 Precision Recall F1

Adaptive attention aggregation 90.67 83.74 16.67 78.49 76.11 74.11 76.65 83.89 76.03 76.17 61.04 67.77
Image embedding aggregation 93.34 86.57 14.07 86.21 80.57 79.61 76.05 83.51 75.19 77.14 65.68 70.95
Coss attention aggregation 93.37 86.40 14.07 86.41 80.56 79.61 76.14 83.52 75.52 77.39 66.14 71.32
LPAA residual aggregation 93.51 86.67 13.87 86.58 81.07 80.10 76.51 83.95 75.77 77.79 66.06 72.44
representative multimodal embedding to better detect multimodal dis-
information. Therefore, we use the LPAA residual aggregation in our
ViKI design.

5. Conclusion

In this work, we proposed a novel model termed Vision-language
Knowledge Interaction (ViKI) for detecting disinformation in multi-
modal data. ViKI is capable of jointly detecting and grounding disinfor-
mation in both vision and language modalities, which is bootstrapped
by the aligned vision-language embeddings that are extracted and
aggregated by ViKI. To enable the embedding to be discriminative in
representing the multimodal objectives, ViKI binded the vision and
language features by jointly optimizing a metric learning objective
and a geometry distance minimization objective, which contributes
to a well-aligned compact hypothesis space. To mine the comple-
mentary knowledge in cross-modality representation, a knowledge in-
teraction mechanism was designed in ViKI to adaptively incorporate
cross-modality information, which is discriminative for the subsequent
multitask learning. We experimentally demonstrated the effectiveness
of ViKI over the existing SOTA methods under both multimodal and
unimodal settings. In contrast to SOAT methods, ViKI has demon-
strated comprehensive advancements simultaneously on four distinct
tasks, including binary classification, multi-classification, grounding of
manipulated image bounding boxes, and grounding of manipulated text
tokens. Notably, there is a rise of 3.71% in precision and 2.14% in
CF1 relative to SOAT. The proposed method is proficient in detecting
multimodal deepfakes. However, it requires an extensive computational
commitment. Hence, forthcoming investigations are required to focus
10
on enabling the network lightweight while maintaining the efficacy of
the fusion mechanism.
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