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Traffic Density Estimation by Distributed Proxy
Model Learning for Internet-of-Vehicle

Qilei Li, Jing-an Cheng, Mingliang Gao*, Jinyong Chen, Gwanggil Jeon

Abstract—Autonomous driving has been significantly advanced
in today’s society, which revolutionized daily routines and facili-
tated the development of the Internet of Vehicles (IoV). A crucial
aspect of this system is understanding traffic density to enable
intelligent traffic management. With the rapid improvement in
deep neural networks (DNNs), the accuracy of density estimation
has markedly improved. However, there are two main issues
that remain unsolved. Firstly, current DNN-based models are
excessively heavy, characterized by an overwhelming number of
training parameters (millions or even billions) and substantial
computational complexity, indicated by a high number of FLOPs.
These requirements for storage and computation severely limit
the practical application of these models, especially on edge
devices with limited capacity and computational power. Secondly,
despite the superior performance of DNN models, their effec-
tiveness largely depends on the availability of large-scale data
for training. Growing privacy concerns have made individuals
increasingly hesitant to allow their data to be publicly used
for model training, particularly in vehicle-related applications
that might reveal personal movements, which leads to data
isolation issues. In this paper, we address these two problems
at once with a systematic framework. Specifically, we introduce
the Proxy Model Distributed Learning (PMDL) model for traffic
density estimation. PMDL model is composed of two main
components. First, we introduce a proxy model learning strategy
that transfers fine-grained knowledge from a larger master model
to a lightweight proxy model, i.e., a proxy model. Second, we
design a distributed learning strategy that trains multiple proxy
models with privacy-aware local data and seamlessly aggregates
these models via a global parameter server. This ensures privacy
protection while significantly improving estimation performance
compared to training models with limited, isolated data. We
tested the proposed model on four major vehicle density analysis
benchmarks and demonstrated its efficiency by outperforming
other state-of-the-art competitors. The code is available at
https://github.com/jinyongch/DPML.

Index Terms—Traffic Analysis, Vehicle Counting, Knowl-
edge Distillation, Internet-of-Vehicle, Distributed Learning,
Lightweight model

I. INTRODUCTION

Traffic density estimation is a fundamental component of
Internet-of-Vehicle (IoV) [1]. It also plays a crucial role in
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urban road monitoring and round-the-clock satellite surveil-
lance. As shown in Fig. 1, this technique allows for the real-
time tracking and analysis of vehicular traffic to improve traffic
management efficiency. Furthermore, density estimation offers
accurate ground traffic data in satellite monitoring, which
is essential for urban planning and emergency management.
These applications significantly influence road planning, intel-
ligent route selection, traffic management, and the operation
of vehicular networks [2].

UVA  Urban road Urban road Density map Road planning

Satellite Earth Remote image Density map Navigation

Fig. 1. The application of Vehicle Density Estimation in the Internet of
Vehicles. Density estimation is crucial for urban road and satellite monitoring.
It offers real-time vehicle flow analysis and precise traffic data to improve
traffic management, urban planning, and emergency response.

With the rapid advancement of machine learning and deep
learning technologies, significant progress has been made
in traffic density estimation [3]. Nevertheless, current deep
learning models [4]–[6] often possess a large number of
parameters, which makes them less suitable for deployment on
resource-constrained edge devices [7]. Particularly in scenarios
demanding real-time processing, the lack of sufficient com-
putational and storage capabilities on edge devices becomes
evident. Most SOTA methods achieve high precision by incor-
porating numerous parameters, which severely restricts their
real-time processing capacity. To balance parameter numbers
and accuracy, knowledge distillation transfers knowledge from
a well-trained teacher model to a simpler student model [8].
The student model achieves performance close to the teacher
with fewer parameters and reduced computational needs [9].
This optimization makes it suitable for edge devices with
limited resources. Moreover, researchers are diligently creating
efficient and simplified lightweight models to the demands of
edge computing environments [10]. These models excel in
rapid responsiveness and reduced power consumption. They
are ideal for real-time data processing on edge devices and
meet the crucial needs of edge computing.

As privacy concerns grow and regulations become stricter,
the challenge of efficiently estimating vehicle density while
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maintaining data privacy has emerged as a significant research
topic. Federated learning allows model training without cen-
tralizing data and effectively protects data privacy [11]–[13].
For example, Chen et al. [14] presented DLPTNet, which
utilizes federated learning to provide accurate crowd counting
without compromising user privacy. It trains models locally on
each device and aggregates updates to the global model. This
process avoids centralized storage and transmitting sensitive
data, which reduces the risk of data breaches.

Based on the above context, we propose the PMDL model
for traffic density estimation. The PMDL consists of three core
components: Master-Proxy Knowledge Distillation, Federated
Proxy Model Optimization, and Mixture-of-Expert Inference.
Firstly, master-proxy knowledge distillation involves a pre-
trained heavyweight master model and a lightweight proxy
model. The proxy model learns from the master model and
shares the final upsampling layer, which ensures precise vehi-
cle density map generation while reducing the computational
cost. Furthermore, federated learning is employed to preserve
data privacy. Clients train local proxy models on their data
and send only the backbone to a central server. The server
aggregates these backbones into a global model, which is
then redistributed to clients to enhance performance while
maintaining privacy. Besides, the global backbone is integrated
with multiple upsampling heads to form several expert mod-
els. These experts produce predictions that are averaged to
improve reliability and estimate uncertainty, which is crucial
for applications such as autonomous driving.

The contributions of this paper are three-fold:
• The proposed PMDL model leverages a proxy learning

method, transferring detailed knowledge from a compre-
hensive master model to a compact proxy model. This
achieves a balance between parameter size and estimation
accuracy.

• We employ a federated learning framework that enables
clients to train models locally using their own data and
then aggregate the results to update the global model.
This approach effectively addresses the issue of data silos
while preserving data privacy.

• We conducted extensive experiments on four vehicle
benchmark datasets to validate the superior accuracy and
robustness of the proposed PMDL model. Notably, this
model achieves high performance with fewer parameters
and lower FLOPs.

II. RELATED WORKS

A. Traffic Density Analysis

Traffic density analysis is a crucial component of mod-
ern intelligent transportation systems [15], which aims to
optimize traffic management through accurate traffic den-
sity estimation. Early methods primarily relied on image
processing approaches, such as background subtraction [16]
and blob analysis [17]. However, these methods often face
significant challenges in complex backgrounds. Sensor-based
methods [18], which involve installing inductive loops and
light detection and ranging devices (LIDAR) on roads to
directly measure vehicle counts, yet have high installation

and maintenance costs. Data-driven methods [19], on the
other hand, predict future traffic density trends by analyzing
historical traffic data, but they are heavily dependent on data
quality and quantity and also raise privacy concerns. Currently,
the mainstream approach is based on density map estimation
methods [4], [20], [21], which use advanced machine learning
algorithms to provide clear visualizations of traffic density
and offer relatively accurate vehicle count estimates. However,
these methods still face limitations in data collection and real-
time performance. With the advent of IoV [22], a new solution
for traffic density analysis has emerged. By leveraging real-
time data obtained through IoV, traffic management systems
can perform intelligent scheduling to optimize traffic flow.
In this paper, density map estimation and IoV are combined
to expand traffic density analysis from static data processing
to dynamic, real-time, and comprehensive traffic condition
monitoring.

B. Distributed Deep Learning

Distributed Deep Learning (DDL) is a method of training
deep learning models in parallel across multiple computing
nodes, aimed at accelerating the training process and handling
large-scale datasets [23]. The key goal of DDL is to effectively
utilize computing resources and memory to improve the speed
and performance of model training [24], [25]. Federated
Learning, a significant form of distributed learning, maximizes
the protection of each participant’s data privacy. Federated
learning involves training machine learning models across
multiple devices or nodes using local data, with model updates
shared centrally without transferring raw data. Decentralized
learning also distributes learning across nodes but without
a central server, relying on peer-to-peer communication for
model updates and coordination. Both aim to improve privacy
and scalability but differ in their coordination methods.
Federated Learning achieves distributed training and privacy
protection by sharing only model parameters or gradients
rather than the original data. Brendan McMahan et al. [26]
introduced the basic concepts and framework of federated
learning, proposing a federated averaging algorithm (FedAvg)
that demonstrates how to train deep learning models on
distributed devices efficiently. Yang et al. [27] summarized
the challenges, methods, and future directions of federated
learning, including issues such as privacy protection, commu-
nication efficiency, and system heterogeneity. Li et al. [28]
studied the optimization of federated learning in heterogeneous
networks, proposing a new algorithm to address differences
in device performance and data quality. Abadi et al. [29]
explored how to apply differential privacy techniques in deep
learning to protect user data privacy while maintaining model
performance.

C. Knowledge Distillation

Knowledge distillation (KD) is a technique where a large
model (teacher) transfers its knowledge to a smaller model
(student). This approach enables the student model to achieve
performance comparable to the teacher by mimicking the
teacher’s output probabilities. Recent advances in KD include
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Fig. 2. The Framework of the Proxy Model Distributed Learning (PMDL) model. Local client n refers to n clients with identical network structures, training
locally with their own data. Only model parameters are exchanged, while local data stays on the client. Align signifies the proxy model learning from the
master model, which helps it learn fine-grained knowledge more effectively.

incorporating intermediate hints, attention transfer, and more
sophisticated methods for enhancing student performance. For
example, Tian et al. [30] introduced contrastive represen-
tation distillation, which focuses on aligning the students’
representations with those of the teacher. Similarly, Cho and
Hariharan [31] explored the efficacy of KD with early stop-
ping, which demonstrates that early-stage teacher models can
be effective for distillation. KD has facilitated the creation
of lightweight models suitable for deployment on resource-
constrained devices, which brings significant benefits to natu-
ral language processing, speech recognition, and computer vi-
sion. Jiao et al. [32] developed TinyBERT, a smaller and faster
version of BERT, which achieves competitive performance
on multiple NLP benchmarks. In speech recognition, Huang
et al. [33] compared various KD techniques to compress
acoustic models, which can enhance inference speed without
compromising accuracy. In computer vision, KD has been
particularly effective in creating efficient models for real-time
applications. For example, Heo et al. [34] conducted an in-
depth analysis of distillation techniques to reduce the compu-
tational burden of deep convolutional neural networks (CNNs).
Additionally, recent methods like feature-map transfer and
adversarial distillation have shown substantial improvements
in tasks such as image classification, object detection, and
semantic segmentation. Gou et al. [9] conducted a compre-
hensive survey on these techniques, which emphasize the
important role of KD in enabling high-performance models
on edge devices with limited computational power.

D. KD for Internet of Vehicles

The application of KD in the Internet-of-Vehicles (IoV) is
particularly noteworthy. IoV systems require real-time data
processing for tasks such as autonomous driving, traffic man-
agement, and vehicle-to-vehicle communication. Lightweight
models derived from KD can be deployed in vehicles to
process visual data efficiently, and to enable advanced driver
assistance systems (ADAS), as well as enhancing safety fea-
tures. For instance, Chen et al. [35] demonstrated by using
KD, one can create efficient perception models for autonomous
driving, which can operate in real-time on edge devices within
vehicles. Such models can accurately detect and classify

objects, recognize traffic signs, and monitor driver behaviour,
all while maintaining low latency and high accuracy. These
advancements in KD and lightweight model learning are
crucial for supporting IoT, AIoT, and IoV scenarios, where
computational resources are limited but real-time processing
is essential. In this paper, we applied KD to distil a lightweight
from a larger master model to achieve real-time road traffic
density analysis, which can provide a solid foundation for
autonomous driving, and IoV.

III. METHODOLOGY

A. Overview of the Framework

In this paper, we introduce a Proxy Model Distributed
Learning (PMDL) model to address computational complexity
and data privacy in DNN-based traffic density estimation.
The overview of the framework is shown in Fig. 2 and
Fig. 4, it is composed of three main components: Master-
Proxy Knowledge Distillation, Federated Proxy Model Op-
timizing, and Mixture-of-Expert Inference. (1) The Master-
Proxy Knowledge Distillation involves a pre-trained heavy-
weight master model and a lightweight proxy model. The
proxy model learns from the master model while sharing the
final upsampling layer. This ensures accurate vehicle density
map generation with reduced computational burden. (2) To
maintain data privacy, we employ Federated Learning in the
Federated Proxy Model Optimizing component. Clients train
local proxy models on their data and send only the backbone
to a central server. The server aggregates these to form a
global backbone, which is then redistributed to the clients. This
process enhances model performance while protecting data
privacy. (3) In the Mixture-of-Expert Inference component, the
global backbone is combined with multiple upsampling heads
to create several expert models. Each expert generates predic-
tions, which are averaged to improve reliability and estimate
uncertainty. This is essential for high-stakes applications like
autonomous driving.

B. Master-Proxy Knowledge Distillation

To achieve lightweight vehicle density map generation and
counting, we design a Master-Proxy Knowledge Distillation
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Fig. 3. The structure of the Master-Proxy Knowledge Distillation framework.
Both the master (top) and proxy (bottom) models are trained on local paired
data. After pretraining the master model, the proxy model is then refined by
fine grained knowledge from the master model supervised by the loss function
LKD. Ultimately, the density map generated by the proxy model is aligned
with the ground truth (GT) optimized by the loss function Ltask.

(MPKD) Framework. This approach involves a pre-trained,
heavyweight master model M = {BM ,U}, and a lightweight
proxy model P = {BP ,U}. The final upsampling layer U
for density map generation is shared among the master model
and the proxy model. Once the master model is trained, it will
remain frozen during the proxy model training. Let FM and
FP represent the feature maps generated by the master and
proxy backbones models, respectively, immediately before the
shared upsampling layer U as:

FM = BM (X), FP = BP (X) (1)

The goal is to minimize the discrepancy between these feature
maps {FM,FP}, and to ensure that the proxy model performs
well on the vehicle density map generation task. The shared
upsampling layer U transforms the feature maps {FM ,FP }
into the respective density maps {DM, DP}:

DM = U(FM ), DP = U(FP ). (2)

The distillation process is jointly supervised by two learning
objectives. The first one, Knowledge Distillation (KD) Loss,
denoted as LKD, calculates the Mean Square Error (MSE)
between the feature maps FM and FP as:

LKD =

√√√√ 1

N

N∑
i=1

∣∣Fi
M − Fi

P

∣∣2, (3)

where N is the number of elements in the feature maps. The
second one, Task Loss, denoted as Ltask, calculates the MSE
between the predicted density maps DP and the ground truth
density maps DGT as:

Ltask =

√√√√ 1

N

N∑
i=1

∣∣Di
P −Di

GT

∣∣2. (4)

The overall objective is to minimize the sum of these two
losses:

Ltotal = LKD + Ltask. (5)

By leveraging the pre-trained knowledge of the master model
and the efficiency of the proxy model, our framework ensures

accurate vehicle density map generation while maintaining
computational efficiency. The shared upsampling layer U acts
as a conduit for transferring knowledge, so as to allow the
proxy model to produce high-quality density maps without ex-
tensive additional training. This method effectively combines
the strengths of both models, and achieves a balance between
performance and efficiency.

C. Federated Proxy Model Optimizing

To address privacy concerns and data isolation issues in
vehicle density estimation, we further integrate a Federated
Learning (FL) strategy in our PMDL model, to achieve
federated proxy model optimizing. This enables collaborative
learning across multiple clients without exposing sensitive
local data to a central server.

Assume there are K clients available, each client trains
its local proxy model Pi on its dataset Di = {Xj

i ,Y
j
i },

by iteratively optimizing the model’s performance for vehicle
density map generation with Eq. (5). Specifically, each client
i locally trains its proxy model Pi , and uploads only the
backbone Bi

P (excluding the final upsampling layer Ui) to the
central server. The central server aggregates these backbones
to form a global backbone Bg

P , which is then sent back to
the clients. This iterative model exchange process ensures
that the model benefits from diverse data while maintaining
data privacy. Under this Federated Learning context, the local
training loss for client i, denoted as Li, is computed based
on its dataset Di, and the learning objective for the client i is
formulated as

Li =

√√√√ 1

ni

ni∑
j=1

∣∣∣Dj
Pi
−Dj

GTi

∣∣∣2 +
√√√√ 1

ni

ni∑
j=1

∣∣∣Fj
M − Fj

P

∣∣∣2,
(6)

where ni is the number of samples in dataset Di, DPi is the
predicted density map by the proxy model Pi, and DGTi is
the ground truth density map. After local training, each client
sends its updated backbone to the central server. The global
backbone Pg

B is computed as a weighted average of the local
backbones:

Pg
B =

K∑
i=1

ni

N
PBi

, (7)

where K is the number of clients, ni is the number of samples
at client i, and N =

∑K
i=1 ni is the total number of samples

across all clients. Each client then updates its local backbone
PBi

with the global backbone Pg
B :

PBi
← Pg

B . (8)

This federated optimization process repeats for multiple
communication rounds until convergence. By sharing only
the backbones and not the final upsampling layer U, the
proposed PMDL framework maintains the consistency of the
upsampling process across all clients, so as to lead to high-
quality vehicle density maps. This method balances perfor-
mance, efficiency, and privacy, thereby making it well-suited
for real-world applications where data sensitivity is critical.
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Fig. 4. The structure of the Conditional Model Inference. (a). If the novel test
data is allowed to access multiple clients, it can generate multiple predictions
by utilizing the shared backbone and the accessible heads (experts). The final
output is then determined through consensus among these predictions. (b).
In contrast, if the novel test data is restricted to a single client, only one
prediction will be generated using the corresponding available head.

D. Mixture-of-Expert Inference
In inference stage, once the central parameter server aggre-

gates the local models, we obtain a global backbone denoted as
Pg

B . Benefit from the disentangled design of the proxy model
Mi = {BMi

,Ui}, during inference, we can combine Pg
B with

the upsampling heads {Ui}Ki=1 to form K complete experts.
Each expert can then generate a prediction di for a new sample
x as follows:

{di}Ki=1 = {Ui(P
g
B(x))}

K
i=1,

D = E

(
K∑
i=1

di

)
=

K∑
i=1

E(di),

Var(D) =

K∑
i=1

Var(di) + 2
∑

1≤i<j≤K

Cov(di, dj).

(9)

where E(·) stands for the expected value, Var(·) indicates the
variance, and Cov(·) represents the covariance. This can result
in a set of K predictions, allowing us to achieve a more reliable
final prediction by averaging these outputs D. This approach
minimizes the risk of inaccurate predictions and provides an
estimate of uncertainty by calculating the standard deviation.
This capability is often missing in current DNN-based methods
but is crucial for applications requiring high reliability, such
as autonomous driving.

E. Ground Truth Generation
We generate the ground truth density maps as supervision

by using the conventional focal inverse distance transform map
method [36], which can achieve a precise representation of
vehicle density by accounting for the distance of each pixel
from the nearest annotated head location, thereby providing a
more refined density estimation. The density map generation
is formulated as follows:

Fgt =
1

P (x, y)α×P (x,y)+β + C
, (10)

where α and β are empirically set to 0.02 and 0.75, re-
spectively, to align with the previous studies [14], [37]. The
constant C is set to 1 to avoid division by zero and to ensure
numerical stability. P (x, y) denotes the Euclidean distance
between a pixel at coordinates (x, y) and the closest annotated
object location (x′, y′).

IV. EXPERIMENTS

A. Implementation Details

For the master model, we employed the larger
OSNetx1 [38], while for the proxy model, we utilized
the more lightweight OSNetx0.5 [38] variant. The master
model has 4.66M trainable parameters with Flops of 57.61G,
and the lightweight proxy counterpart has 1.19M trainable
parameters with Flops of 15.01G. Once the master model was
pre-trained using the local data, it will be used to supervise
the training of the proxy model. Both models were trained
for 3000 epochs to ensure the convergence, with a learning
rate of 1e-4, and optimized by the Adam algorithm [39]
for parameter updates. During training, input images were
randomly cropped to a spatial resolution of 576 × 768 and
horizontally flipped for data augmentation. The batch size
was set to 8. The coefficients for the distillation loss and
regression loss were both initialized as 1, and optimized
iteratively throughout the training process. All experiments
were conducted using PyTorch [40] on an NVIDIA A100
80GB GPU.

B. Datasets

We employed a wide range of dataset to benchmark the
proposed PMDL model and compared against other state-of-
the-art methods. The statistical overview of the datasets is
shown in Table I.
CARPK dataset [42] originates from various regions in Hong
Kong, such as parking lots and streets, and includes images of
vehicles in different scenes and lighting conditions. It consists
of 1,448 drone view images, with 989 images for training and
459 images for testing.
PUCPR+ dataset [42] contains a large number of video
sequences and images covering different driving scenarios and
perspectives. It includes 125 images with a total of 16,456
annotations. Among these images, 100 are used for training,
and 25 are reserved for testing.
Large-Vehicle dataset [41] is an open dataset specifically
for the study and development of large vehicle detection,
recognition, and tracking. The dataset comprises 172 remote
sensing images, with each image having an average resolution
of 1552× 1573 pixels.
Small-vehicle dataset [41] is another remote sensing vehicle
counting dataset. It contains 280 high-resolution images with a
total of 148,838 small vehicles. Compared to the large vehicle
dataset, it exhibits greater scale variation.
ShanghaiTech Part A [43] dataset mainly refers to datasets
released by ShanghaiTech University for computer vision
tasks. It is a well-known dataset for crowd counting and
density estimation. It consists of 300 training images and 182
testing images.

C. Evaluation Metrics

We used Mean Absolute Error (MAE) and Root Mean
Square Error (RMSE) are utilized as evaluation metrics. MAE
is calculated as the mean of the absolute differences between
the predicted values and the actual values across all test
samples.
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TABLE I
THE STATISTICAL OVERVIEW OF THE EMPLOYED DATASET

Dataset #Images #Train #Test Avg. Resolution #Total

Small-Vehicle [41] 280 222 58 2473 × 2339 148,838
Large-Vehicle [41] 172 108 64 1552 × 1573 16,594
CARPK [42] 1,448 989 459 720 × 1280 89,777
PUCPR+ [42] 125 100 25 720 × 1280 16,456
ShanghaiTech Part A [43] 482 300 182 589 × 868 241,677

TABLE II
EFFICIENCY COMPARISON RESULTS OF VARIOUS METHODS.

Methods Params (M) ↓ FLOPs (G) ↓ Time(ms) ↓ FPS ↑

RAQNet [4] 28.30 250.80 35.20 28.30
SRRNet [5] 66.14 162.09 37.07 26.93
BL [44] 21.50 182.19 15.69 63.75
CSRNet [45] 16.26 182.69 15.07 66.35
CAN [46] 18.10 193.65 17.80 56.17
SASNet [6] 38.90 393.20 45.94 21.77

PMDL (Ours) 4.38 44.28 11.87 84.28

MAE =
1

N

N∑
i=1

|xi − x̂i| . (11)

The RMSE value is computed as the square root of the
average squared difference between the predicted values and
the true values,

RMSE =

√√√√ 1

N

N∑
i=1

|xi − x̂i|2, (12)

where N signifies the number of test images, and xi and x̂i

respectively represent the predicted and actual values for the
i-th image.

D. Efficiency Evaluation

A comparative analysis was performed to validate the ef-
ficiency of the proposed PMDL by benchmarking it against
State-of-the-Art (SOTA) methods. The experiments utilize an
RTX3090 device, with the output size specified as 576×768.
PMDL’s performance was assessed by evaluating the model’s
parameters, floating-point operations (FLOPs), inference time,
and frames per second (FPS). The results of the experiments
are detailed in Table II. PMDL has much fewer parameters
compared to the other SOTA methods, with just 4.38M, and
it requires only 44.28 FLOPs. This implies that PMDL is
more compact and better suited for deployment in real-world
situations with limited resources. Moreover, PMDL achieves
the fastest inference time of 11.87 ms and the highest FPS of
84.28. This highlights PMDL’s superior speed and efficiency
for real-time processing.

E. Comparison with State-of-the-art Methods

Comparison on Vehicle Counting. Table III shows the
results of the experiments performed on the large vehicle and

TABLE III
COMPARISON RESULTS OF VARIOUS METHODS ON SMALL-VEHICLE AND

LARGE-VEHICLE DATASETS.

Method
Large Vehicle Small Vehicle

MAE RMSE MAE RMSE

SCAR [47] 62.78 79.46 497.22 1276.65
CMTL [48] 61.02 78.25 490.53 1321.11
MCNN [43] 36.56 55.55 488.65 1317.44
SPN [49] 36.21 50.56 445.16 1252.92
CAN [46] 34.56 49.63 457.36 1260.39
CSRNet [45] 34.10 46.42 443.81 1252.22
SFCN [50] 33.93 49.74 440.70 1248.27
SANet [51] 62.78 79.65 497.22 1276.66
ASPDNet [52] 31.76 40.14 433.23 1238.61
SFANet [53] 29.04 47.01 435.29 1284.15
SRRNet [5] 18.25 31.24 122.79 419.65

PMDL (Ours) 12.95 24.03 104.09 416.78

small vehicle datasets. On the small vehicle dataset, PMDL has
the lowest MAE of 104.09 and the lowest RMSE of 416.78.
Compared to ASPDNet [52], PMDL improves the MAE by
75.97% and the RMSE by 66.35%. PMDL achieved the best
performance on the large vehicle dataset with an MAE of
12.95 and an RMSE of 24.03. Although ASPDNet [52] can
capture multiscale features, its accuracy may be limited in
small or dense vehicle scenarios. In contrast, PMDL leverages
the teacher model to supervise the student model, thereby
enabling the student model to learn more meaningful feature
representations. Compared to SRRNet [5], PMDL improved
the MAE by 29.04% and the RMSE by 23.08% while reducing
the number of parameters by 98.2%. These results indicate
that PMDL performs well in the vehicle counting task using
remotely sensed datasets. The small size of the vehicles in
these datasets highlights the applicability and effectiveness of
PMDL for counting small objects. The accuracy of PMDL
outperforms that of other methods, demonstrating its ability
to effectively reduce the complexity of the model while
maintaining a high level of accuracy.
Table IV displays the experimental results for the CARPK and
PUCPR+ datasets. The proposed PMDL achieved an MAE of
9.91 and an RMSE of 12.74 on the CARPK dataset, both
of which ranked second. PMDL shows a 14.2% and 13.8%
increase in MAE and RMSE, respectively, compared to the
top-performing SRRNet [5]. However, PMDL decreases the
parameters by 98.2%, which greatly reduces model complexity
with only a minimal decrease in accuracy. PMDL achieved
the highest performance on the PUCPR+ dataset, with an
MAE of 1.67 and an RMSE of 2.20. Compared to the third-
ranked CSRNet [45], PMDL shows an 80.69% improvement in
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Fig. 5. The visual result on the benchmark vehicle datasets. The first row represents the input image, the second row is the ground truth, and the third row
is the generated density map.

TABLE IV
COMPARISON RESULTS OF VARIOUS METHODS ON CARPK AND

PUCPR+ DATASETS. THE BEST PERFORMANCE RESULTS ARE INDICATED
IN BOLD, WHILE THE SECOND-BEST IS UNDERLINED.

Method
CARPK PUCPR+

MAE RMSE MAE RMSE

Faster-RCNN [54] 103.48 110.64 156.76 200.59
YOLO [55] 102.89 110.02 156.72 200.54
SSD [56] 37.33 42.32 119.24 132.22
RetinaNet [57] 16.62 22.30 24.58 33.12
LPN [58] 23.80 36.79 22.76 34.46
One-look Regression [59] 59.46 66.84 21.88 36.73
MCNN [43] 39.10 43.30 21.86 29.53
LEP [60] 51.83 - 15.70 -
CSRNet [45] 11.48 13.32 8.65 29.53
SRRNet [5] 8.50 10.98 2.04 2.79

PMDL (Ours) 9.91 12.74 1.67 2.20

MAE and a 92.55% improvement in RMSE while reducing the
parameter count by 92.7%. These results across both datasets
indicate that PMDL offers a significant advantage for dense
vehicle counting tasks from an overhead perspective, achieving
a commendable balance between accuracy and efficiency. The
subjective results on these two datasets are illustrated in
Fig. 5. The results demonstrate high accuracy across different
datasets, particularly in the CARPK and small vehicle datasets,
where the estimated number of vehicles is almost identical to
the ground truth. From the distribution of the density maps,
the generated vehicle locations closely match the ground truth.
Especially in dense vehicle scenarios, such as CARPK, the
proposed PMDL accurately captures the distribution pattern
of the vehicles.

Comparison on Crowd Counting. To assess the generaliza-

tion ability of the proposed PMDL, we performed experiments
on ShanghaiTech Part A datasets. The images in the Part
A dataset come from the internet and show a dense crowd
distribution, which creates certain challenges for counting
tasks. The Comparison results of PMDL are detailed in
Table V. The proposed PMDL demonstrated the second-best

TABLE V
COMPARISON OF DIFFERENT METHODS ON SHANGHAITECH PART A

DATASET

Method MAE RMSE

MCNN [43] 110.20 173.20
PCCNet [61] 73.50 124.00
SANet [51] 75.30 122.20
TDF-CNN [62] 97.50 145.10
LCNet [63] 93.30 149.00
CCNN [64] 88.10 141.70
1/4SAN+SKT [65] 78.00 126.60
MobileCount [66] 89.40 146.00
SRRNet [5] 60.80 103.00
RAQNet [4] 59.00 101.20

PMDL (Ours) 60.57 101.43

performance on the ShanghaiTech Part A dataset. Although
compared to the best approach, RAQNet [4], the proposed
method showed an increase of 2.59% in MAE and 0.23%
in RMSE, it significantly improved model simplicity and
efficiency by reducing parameters by 95.8%. Compared to the
third-ranked SRRNet [5], the proposed PMDL improved MAE
and RMSE by 0.38% and 1.52%, respectively, while reducing
the number of parameters by 98.2%. The results from Part
A datasets validate the effectiveness of the proposed PMDL
model.
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F. Ablation Study

Effectiveness of Master-Proxy Learning Framework. To
validate the effectiveness of Master-Proxy Knowledge Distil-
lation, we conducted ablation experiments on three vehicle
datasets. The results are presented in the Table VI. Proxy
refers to using only the student model, while Master-Proxy
means using the teacher model to supervise the student model.
The results demonstrate significant performance improvements
across all three datasets, particularly on the PUCPR+ dataset,
where the Master-Proxy Knowledge Distillation method in-
creased MAE and RMSE by 66.60% and 66.92%, respectively.
These findings indicate that the proxy model, under the
guidance of the master model, significantly enhances counting
accuracy. Moreover, in practical applications, such design does
not increase model parameters and computational complexity.
This enhancement significantly increases the model’s practical
value and provides an efficient, accurate solution for vehicle
counting in complex environments.

TABLE VI
THE ABLATION STUDY RESULTS OF MASTER-PROXY KNOWLEDGE

DISTILLATION.

Methods
Large vehicle Small vehicle PUCPR+

MAE RMSE MAE RMSE MAE RMSE

Proxy 16.09 28.40 120.44 420.51 5.00 6.65
Master-Proxy 12.95 24.03 104.09 416.78 1.67 2.20

Effectiveness of Federated Training Strategy To evaluate
the effectiveness of the federated learning framework and its
impact on model performance with varying client numbers,
we conducted experiments on the Small-vehicle dataset. We
randomly split the training set into n subsets and tested the
local-trained model on the full test set. The final result is the
average of n experiments. The PMDL method aggregates the
models from n clients by federated learning and evaluates the
results. The experimental results are shown in the Table VII.
It is evident that our method outperforms the The split data
baseline method is more stable. When training samples are
sufficient, with n being 2 or 4, the performance remains
balanced. In contrast, when data is insufficient, e.g., n being
8, the efficiency of the split training method decreases, which
lead to approximately 10 MAE errors. This demonstrates the
stability of PMDL, particularly in scenarios with limited local
data.

TABLE VII
THE ABLATION STUDY RESULTS OF FEDERATED TRAINING STRATEGY.

Methods
n = 2 n = 4 n = 8

MAE RMSE MAE RMSE MAE RMSE

Split Data 123.59 426.72 131.24 426.61 150.38 433.86
PMDL (Ours) 117.05 427.90 115.79 420.77 140.34 433.69

V. CONCLUSION

In this paper, we tackled the two main challenges in
DNN-based traffic density estimation, namely computational
complexity and data privacy, by the introduced Proxy Model
Distributed Learning (PMDL) model. The proposed PMDL
model leverages a proxy model learning strategy to trans-
fer knowledge from a larger master model to a lightweight
proxy model. Additionally, we employed a Federated Learning
strategy that allows multiple proxy models trained on privacy-
aware local data to be aggregated via a global parameter server.
This reduces the computational burden and maintains data
privacy while improving model performance compared with
per-local domain separate training. To validate the proposed
PMDL model, we conducted extensive evaluations on four
major vehicle density analysis benchmarks, as well as standard
crowd-counting benchmark datasets. The experimental results
demonstrated that the PMDL model outperforms state-of-the-
art competitors by a large margin, which confirms its effec-
tiveness and efficiency for real-world applications. Although
the federated training framework helps protect local data
privacy by aggregating updates from connected local models,
these updates remain susceptible to various malicious attacks
targeting the model or gradients. An open gap for future
research is the identification and mitigation of these attacks
to maintain the integrity and security of PMDL framework.
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